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Figure 1. Some examples of HDR images reconstruction.The up-
per row is input LDR images,and the lower row is the recon-
structed HDR images.

Abstract

This paper introduces five papers with regard to HDR
images reconstruction using deep learning methods.Three
of them are muti-image reconstruction and two of them are
single-image reconstruction.I analyze these methods and
gives a original table to summarize their characteristics and
differences.Besides,I notice that HDR images reconstruc-
tion still faces many challenges,and I propose some aspects
that can be researched in future work.

1. Introduction

The dynamic range of natural luminance values varies
over several orders of magnitude. However, most digital
photography sensors can only measure a limited fraction of
this range. The resulting low dynamic range (LDR) im-
ages thus often have over or underexposed regions and don’t
reflect the human ability to see details in both bright and
dark areas of a scene. High dynamic range (HDR) imag-
ing has been developed to compensate for these limitations,
and ideally aims to generate a single image that represents a
broad range of illuminations,which are now routinely used
in many applications including photo realistic image syn-
thesis and a range of post-processing operations; for an
overview see [2].

The majority of the work in the field of HDR imaging

has focused on displaying HDR content and on the creation
of such content from a series of LDR images, see for in-
stance [8]. And recent years, several methods [24,26,31,33]
that focus on recovering an HDR image from only a single
LDR input,which is called Single-image HDR reconstruc-
tion,have been also developed.

In this paper,I present three methods [20, 39, 40] to
merge several LDR images captured at different exposures
based on deep learning and two methods [9, 28] for single-
image HDR reconstruction.The first approach proposed by
KALANTARI [20] uses a convolutional neural network to
generate the HDR image from a set of images aligned with
optical flow.And the second approach proposed by Wu et
al. [39] formulate HDR imaging as an image translation
problem without optical flows.The third one is achieved
by a novel attention-guided end-to-end deep neural net-
work (AHDRNet),which is proposed by Yan et al. [40].The
fourth and the fifth is about single-image HDR reconstruc-
tion,which the former [9] is by deep convolutional neural
networks (CNNs) and the latter [28] is by learning to reverse
the camera pipeline.These approaches solve problems to a
great extent,such as alleviating ghosting artifacts,recovering
missing information in under-exposed regions and halluci-
nating the contents in saturated regions,which contribute a
lot to the reconstruction of HDR images.

2. Related Work
High dynamic range imaging has been the subject of ex-

tensive research over the past decades. One class of tech-
niques captures HDR images in a single shot by modifying
the camera hardware. For example, a few methods use a
beam-splitter to split the light to multiple sensors [37]. Sev-
eral approaches propose to reconstruct HDR images from
coded per pixel exposure [15] or modulus images [43].
These methods produce high-quality results on dynamic
scenes since they capture the entire image in a single shot.
Unfortunately, they require cameras with a specific optical
system or sensor, which are typically custom made and ex-
pensive and, thus, not available to the general public.

Another category of approaches reconstructs HDR im-



ages from LDR images. Since bracketed exposure images
can be easily captured with standard digital cameras, these
methods are popular and used in widely available devices
such as smartphone cameras. They categorize these ap-
proaches into two general classes and discuss them next.

Multi-image HDR reconstruction. The most common
technique for creating HDR images is to fuse a stack of
bracketed exposure LDR images [8]. To handle dynamic
scenes, image alignment and post-processing are required to
minimize artifacts [23,29,36]. Conventionally, HDR recon-
struction has been performed by non-learning-based bright-
ness enhancement through filtering or light-source detec-
tion.Bogoni [7] estimated motion vectors using optical flow
and used parameters to warp pixels in the exposures. Kang
et al. [21] transformed intensities of LDR images to the lu-
minance domain using exposure time information and com-
puted the optical flow to find corresponding pixels among
the LDR images. Sen et al. [34] proposed a patch-based
energy minimization approach that integrates alignment and
HDR reconstruction in a joint optimization. Hu et al. [17]
optimized image alignment based on brightness and gradi-
ent consistencies on the transformed domain. Hafner et al.
[13] proposed an energy-minimization approach which si-
multaneously calculates HDR irradiance and displacement
fields. However, non-learning-based approaches cannot es-
timate physically accurate amounts of light due to the lack
of knowledge about real HDR images; thus, the quality of
the estimated HDR images is limited. Recent methods ap-
ply CNNs to fuse multiple flow-aligned LDR images [19]
or unaligned LDR images [39]. These methods have the
advantage that they can exploit information extracted from
training data to identify and compensate for image regions
that do not meet the assumptions underlying the HDR pro-
cess.

Single-image HDR reconstruction. Single-image HDR
reconstruction does not suffer from ghosting artifacts but
is significantly more challenging than the multi-exposure
counterpart. Early approaches estimate the density of light
sources to expand the dynamic range [1, 3–6] or apply
the cross-bilateral filter to enhance the input LDR images
[18, 25]. With the advances of deep CNNs [14, 35], sev-
eral methods have been developed to learn a direct LDR-
to-HDR mapping [30, 41, 42]. Given a single input LDR
image, Endo use an auto-encoder [16] to generate a set of
LDR images with different exposures. These images are
then combined to reconstruct the final HDR image. Lee et
al. [26] chain a set of CNNs to sequentially generate the
bracketed LDR images. Later, they propose et al. [26]to
handle this application through a recursive conditional gen-
erative adversarial network (GAN) et al. [12] combined
with a pixel-wise l1 loss.In contrast to these approaches, a
few methods [9, 30, 41] directly reconstruct the HDR im-
age without generating bracketed images. [9]use a network

with U-Net architecture to predict the values of the satu-
rated areas, whereas linear non-saturated areas are obtained
from the input. [30]present a novel dedicated architecture
for end-to-end image expansion. [41] reconstruct HDR im-
age for image correction application. They train a network
for HDR reconstruction to recover the missing details from
the input LDR image, and then a second network transfers
these details back to the LDR domain.

3. Deep High Dynamic Range Imaging of Dy-
namic Scenes

KALANTARI et al. [20]first used the optical flow
method of Liu [27] to align the images with low and high
exposures to the one with medium exposure, which is called
the reference image,and they proposed a convolutional neu-
ral network which can avoid artifacts to a great extent to
generate the HDR image from a set of aligned images.The
contributions of the work are as follows:

• They propose the first machine learning approach for
reconstructing an HDR image from a set of bracketed
exposure

• They fully explore the idea by presenting three differ-
ent system architectures and comparing them exten-
sively. LDR images of a dynamic scene.

• They introduce the first dataset suitable for learning
HDR reconstruction, which can facilitate future learn-
ing research in this domain. In addition, their dataset
can potentially be used to compare different HDR re-
construction approaches.And we can see later in the
survey that the dataset is indeed widely used in re-
search.

3.1. Algorithm

Given a set of three LDR images of a dynamic scene
(Z1, Z2, Z3), the goal is to generate a ghost-free HDR im-
age, H, which is aligned to the medium exposure image
Z2 (reference). This process can be broken down into two
stages of 1) alignment and 2) HDR merge. During align-
ment, the LDR images with low and high exposures, de-
fined with Z1 and Z3, respectively, are registered to the ref-
erence image, denoted as Z2. This process produces a set
of aligned images, I = {I1, I2, I3} , where I2 = Z2. These
aligned images are then combined in the HDR merge stage
to produce an HDR image, H.

Extensive research on the problem of image alignment
(stage 1) has resulted in powerful techniques over the
past decades,but often produce artifacts around the motion
boundaries and on the occluded regions.Since the aligned
images are used during the HDR merge (stage 2) to pro-
duce the final HDR image, these artifacts could potentially
appear in the final result.



The authors observed that the alignment artifacts from
the first stage can be significantly reduced through the HDR
merge in the second stage and inspired by the recent success
of deep learning in a variety of applications,they proposed
to model this process with a convolutional neural network
(CNN).

Preprocessing the Input LDR Images.They first lin-
earize LDR images using the camera response function
(CRF) if they are not in the RAW format,then apply gamma
correction (γ = 2.2) on them to produce the input images to
their system, Z1, Z2, Z3.

Alignment.They first raise the exposure of the darker
image to the brighter one since optical flow methods require
brightness constancy to perform well.Then They compute
the flow between Z3 and Z2whose brightness has been ad-
justed using the optical flow algorithm by Liu [27].Finally,
they use bicubic interpolation to warp the high exposure im-
age Z3 using the calculated flow.This process produces a set
of aligned images I = {I1, I2, I3}.

HDR Merge.The main challenge of this component is
to detect the alignment artifacts and avoid their contribution
to the final HDR image.In their system, they use machine
learning to model this complex task. Therefore, there are
two main issues to be addressed: the choice of 1) model,
and 2) loss function. Let’s see loss function first because
there are some mathematical symbols introduced and will
appear in the introduction of models.

1)Loss Function:Since HDR images are usually dis-
played after tonemapping, they choose to compute the loss
function between the tonemapped estimated and ground
truth HDR images.And they propose to use µ-law, a
commonly-used range compressor in audio processing,
which is differentiable and suitable for their learning sys-
tem.This function is defined as:

T =
log(1 + µH)

log(1 + µ)
(1)

where µ is a parameter which defines the amount of com-
pression and is set to 5000 in their implementation, H is the
HDR image in the linear domain, and T is the tonemapped
image. They train the learning system by minimizing the
l2 distance of the tonemapped estimated and ground truth
HDR images defined as

E =

3∑
K=1

(T̂k − Tk)
2 (2)

where T̂k and Tk are the estimated and ground truth
tonemapped HDR images and the summation is over color
channels.

2)Model:They propose three different architec-
tures:direct, weight estimator (WE) architecture,weight and
image estimator (WIE) architecture.

Direct. In this architecture,they model the entire HDR
merge process using a CNN.The CNN takes a stack of
aligned images in the LDR and HDR domains as input,
{I,H} and outputs the final HDR image, H .The goal of
training is to find the optimal network weights, w, by
minimizing the error between the estimated and ground
truth tonemapped HDR images,defined in Eq.(2).To com-
pute the derivative, of the error with respect to the network
weights,they use the chain rule to break down this derivative
into three terms as:

∂E

∂w
=

∂E

∂T̂

∂T̂

∂Ĥ

∂Ĥ

∂w
(3)

The second term is the derivative of the tonemapping
function, defined in Eq.(1),and can be computed as:

∂T̂

∂Ĥ
=

µ

log(1 + µ)

1

1 + µĤ
(4)

Weight Estimator (WE). The existing techniques typi-
cally compute a weighted average of the aligned HDR im-
ages to produce the final HDR result:

Ĥ(p) =

∑3
j=1 αj(p)Hj(p)∑3

j=1 αj(p)
, where Hj(p) =

IYj
tj

.

(5)
Here, the weight αj(p) basically defines the quality of

the jth aligned image at pixel p and needs to be estimated
from the input data.

They propose to learn the weight estimation process us-
ing a CNN. In this case, the CNN takes the aligned LDR
and HDR images as input, {I,H}, and outputs the blend-
ing weights, α.

The this derivative is broken down into four terms as:

∂E

∂w
=

∂E

∂T̂

∂T̂

∂Ĥ

∂Ĥ

∂α

∂α

∂w
(6)

Since the estimated HDR image in this case is obtained
using Eq.(5), we can compute the third term as

∂Ĥ

∂αi
=

Hi(p)− Ĥ(p)∑3
j=1 αj(p)

(7)

This architecture is more constrained than the direct ar-
chitecture and easier to train. Therefore, it produces high-
quality results with significantly fewer residual artifacts.

Weight and Image Estimator (WIE). In this architecture
they relax the restriction of the previous architecture by al-
lowing the network to output refined aligned images in ad-
dition to the blending weights.They use Eq.(5) to compute
the final HDR image using the refined images, Ĩi , and the
estimated blending weights, αi.The derivative can be calcu-
lated as follows:



∂E

∂w
=

∂E

∂T̂

∂T̂

∂Ĥ

∂Ĥ

∂{α, Ĩ}
∂{α, Ĩ}
∂w

(8)

They propose to perform the training in two stages so
that the convergence can be faster.In the first stage, they
force the network to output the original aligned images as
the refined ones, by minimizing the ℓ2 error of the output of
the network and the original aligned images.In the second
stage, they perform a direct end-to-end training and further
optimize the network by synthesizing refined aligned im-
ages.

Network Architecture. In their system, the networks have
a decreasing filter size starting from 7 in the first layer to 1
in the last layer. All the layers with the exception of the
last layer are followed by a rectified linear unit (ReLU). For
the last layer, they use sigmoid activation function so the
output of the network is always between 0 and 1. And they
use a fully convolutional network, so our system can handle
images of any size.

Discuss. The direct architecture is the simplest among
the three, but in rare cases leaves small residual alignment
artifacts in the results. The WE architecture is the most con-
strained one and is able to better suppress the artifacts in
these rare cases. Finally, similar to the direct architecture,
the WIE architecture is able to synthesize content that is not
available in the aligned LDR images. However, the direct
and WIE architectures slightly overblur images in dark re-
gions to suppress the noise.Therefore, they believe the WE
is the most stable architecture and produces results with the
best visual quality.

3.2. Dataset

Training deep networks usually requires a large number
of training examples. In this case, each training example
should consist of a set of LDR images of a dynamic scene
and their corresponding ground truth HDR image. Unfor-
tunately, most existing HDR datasets either lack ground
truth images et al. [38], are captured from static scenes et
al. [10], or have a small number of scenes with only rigid
motion [22].

To overcome this problem, they created their own train-
ing dataset of 74 different scenes and substantially extend it
through data augmentation,which also brings benefits to the
follow-up studies.

Capturing Process.The goal is to produce a set of LDR
images with motion and their corresponding ground truth
HDR image. First,they capture a static set with different ex-
posures and use a simple triangle weighting scheme, similar
to the method of Debevec and Malik [8], to merge them into
a ground truth HDR image.Next, they capture a dynamic set
to use as our input by asking the subject to move.After dis-
carding scenes containing unacceptable motions,they got 74
training scenes.

Data Augmentation.They used color channel swap-
ping and geometric transformation (rotating 90 degrees
and flipping) with 6 and 8 different combinations, respec-
tively,finally increasing the number of scenes to 740.

Patch Generation.They break down the training images
into overlapping patches of size 40 × 40 with a stride of
20 and select the proper training patches,which results in
around 1,000,000 selected patches.

3.3. Limitations

The main limitation of this approach is that the network
takes a specific number of images as the input because the
model is trained by a set of three input images.Another lim-
itation is that in some cases, because of the camera motion,
the low and high exposure images do not have information
at the boundaries of the image,and the approach will result
in being noisy or saturated.

4. Deep High Dynamic Range Imaging with
Large Foreground Motions

Different from KALANTARI [20]’s using optical flow
to align images, this paper [39] proposes the first non-flow-
based deep framework for HDR imaging of dynamic scenes
with large-scale foreground motions,and resolve the issues
that in some cases color artifacts and geometry distortions
appears using KALANTARI’s approach due to the unrelia-
bility of the optical flow. And it can hallucinate plausible
details in largely saturated regions with large foreground
motions,and recovers highlight regions greatly.Also,it can
be easily extended with more inputs, and with different
reference images, not limited to the medium exposure
LDR,which is a limitation of [20].

4.1. Approach

They formulate the problem of HDR imaging as an im-
age translation problem and focus on handling large fore-
ground motions.

Network Architecture. The framework is essentially a
symmetric encoder-decoder architecture, with two variants,
Unet whose more details can be seen in [32] and ResNet
which is similar to Image Transformation Networks pro-
posed in [19] and the middle layers is replaced with residual
blocks.

The overall architecture can be conceptually divided into
three components: encoder, merger and decoder. Instead of
duplicating the whole network, which may defer the merg-
ing, they separate the first two layers as encoders for each
exposure inputs. After extracting the features, the network
learns to merge them, mostly in the middle layers, and to
decode them into an HDR output, mostly in the last few
layers.

The encoding layers are convolution layers with a stride



of 2, while the decoding layers are deconvolution layers ker-
nels with a stride of 1/2. The output of the last deconvolu-
tion layer is connected to a flat-convolution layer to produce
the final HDR. All layers use 5 × 5 kernels, and are fol-
lowed by batch normalization (except the first layer and the
output layer) and leaky ReLU (encoding layers) or ReLU
(decoding layers). The channel numbers are doubled each
layer from 64 to 512 during encoding and halved from 512
to 64 during decoding.And they used the dataset provided
by [20]for training and testing.

Processing Pipeline and Loss Function They denote
the set of input LDRs by I = {I1, I2, I3}, sorted by
their exposure biases. They first map them to H =
{H1, H2, H3} in the HDR domain, and use simple gamma
encoding for this mapping:

Hi =
Iγi
ti
, γ > 1 (9)

where ti is the exposure time of image Ii .The values of
Ii, Hi and H are bounded between 0 and 1.

They then concatenate I and H channel-wise into a 6-
channel input and feed it directly to the network as sug-
gested in [20].The network f is thus defined as:

Ĥ = f(I,H) (10)

where Ĥ is the estimated HDR image, and is also bounded
between 0 and 1.And the loss funnction is defined as:
[20].The network f is thus defined as:

LUnet = ∥T (Ĥ)− T (H)∥2 (11)

where H is the ground truth HDR image and T (H) is µ-
law,as Eq.(1).

4.2. Limitations

Since they are focused on handling large foreground mo-
tions, they align the backgrounds of the LDR inputs us-
ing homography transformation.Without background align-
ment, the network tends to produce blurry edges where
background is largely misaligned.And homography is not
always perfect,for example,if there is existence of parallax
effects in saturated regions.What’s more,recovering mas-
sive saturated regions with minimal number of input LDRs
is still a challenge for the network.

5. Attention-guided Network for Ghost-free
High Dynamic Range Imaging

In this paper [40], Yan propose an attention-guided deep
neural network (AHDRNet) for HDR imaging.The neural
network learns the relationships between input LDR images
and HDR output.The attention modules generate soft atten-
tion maps to evaluate the importance of different image re-
gions for obtaining the required HDR image.By doing this,

they overcome one of the primary problems in HDR imag-
ing is that it is robust to large misalignments of image pixels
and saturation.

5.1. Attention-guided Network for HDR Imaging

Following the settings in [20, 39], they use three LDR
images (I1, I2, I3)(sorted by their exposure lengths),and
use gamma correction to generate a corresponding set of
{Hi}.As suggested in [20], they concatenate images Ii and
Hi along the channel dimension to obtain the 6-channel ten-
sors Xi = [Ii, Hi], i = 1, 2, 3 as the input of the network.

5.2. AHDRNet Architecture

Unlike the previous methods [20, 39] that stack the in-
put images Xi or the extracted feature maps in the early
stage of the network for merging, the proposed AHDRNet
obtains the attention maps by comparing the encoded image
features and then merges features with the guidance of the
attention maps.The AHDRNet consists of two major sub-
networks, the attention network (for feature extraction) and
the merging network (for HDR image estimation).

Attention network.. The attention module is used to ex-
clude the harmful components caused by misalignment and
saturation or highlight the useful details. The network first
uses a shared encoding layer to extract feature maps Zi , i
= 1,2,3 with 64 channels from three inputs.They feed the
features Zi , i = 1,3 of the non-reference images to the con-
volutional attention module ai(·), i = 1,3 along with the ref-
erence image feature map Zr, and then obtain the attention
maps Ai for the non-reference images:

Ai = ai (Zi, Zr) , i = 1, 3 (12)

The predicted attention maps are used to attend the fea-
tures of the non-reference images via:

Z ′
i = Ai ◦ Zi, i = 1, 3 (13)

where ◦ denotes the point-wise multiplication and Z ′
j de-

notes the feature maps with attention guidance.
Then they stack the images:

Zs = Concat (Z ′
1, Z2, Z

′
3) (14)

where Concat(·) denotes the concatenation operation. Zs

will be used as the input of the merging network.
The attention modules ai(·), i = 1, 3 in Eq. (14) are two

small CNNs and followed by a ReLU activation and a sig-
moid activation, respectively.

Merging network. The network consists of several con-
volution layers, dilated residual dense blocks and several
skip connections.By using dilated residual dense blocks, the
receptive field at each block is expanded. And the network
is showed in Fig2.



Figure 2. The merging network is constructed based on a series of
dilated residual dense blocks (DRDBs). The global residual skip
connection is used to boost the training.

5.3. Loss Function

In this method, they train the network by minimizing
ℓ1- norm based distance between the tonemapped estimated
and the ground truth HDR images. The loss function is de-
fined as:

L = ∥T (Ĥ)− T (H)∥1 (15)

where T (H) is µ-law,seen in Eq.(1)

6. HDR image reconstruction from a single ex-
posure using deep CNNs

The Section 6 and Section 7 will focus on two ap-
proaches for single-image HDR reconstruction.In this pa-
per,EILERTSEN et al. [9]propose a novel method for re-
constructing HDR images from LDR input images, by es-
timating missing information in bright image parts, such as
highlights, lost due to saturation of the camera sensor.It can
reconstruct a high quality HDR image from an arbitrary sin-
gle exposed LDR image, provided that saturated areas are
reasonably small.And they propose a hybrid dynamic range
autoencoder that is tailored to operate on LDR input data
and output HDR images.

6.1. HDR Reconstruction Model

Problem formulation and constraints The final HDR
reconstructed pixel Ĥi,c with spatial index i and color chan-
nel c is computed using a pixel-wise blending with the blend
value αi,

Ĥi,c = (1− αi) f
−1 (Di,c) + αi exp (ŷi,c) (16)

where Di,c is the input LDR image pixel and ŷi,c is the
CNN output (in the log domain).The inverse camera curve
f−1 is used to transform the input to the linear domain.

αi =
max (0,maxc (Di,c)− τ)

1− τ
(17)

Figure 3. Fully convolutional deep hybrid dynamic range autoen-
coder network, used for HDR reconstruction. The encoder con-
verts an LDR input to a latent feature representation, and the de-
coder reconstructs this into an HDR image in the log domain. The
skip-connections include a domain transformation from LDR dis-
play values to logarithmic HDR, and the fusion of the skip-layers
is initialized to perform an addition. The network is pre-trained on
a subset of the Places database, and deconvolutions are initialized
to perform bilinear upsampling. While the specified spatial reso-
lutions are given for a 320 × 320 pixels input image, which is used
in the training, the network is not restricted to a fixed image size.

Hybrid dynamic range autoencoder Autoencoder ar-
chitectures transform the input to a low-dimensional latent
representation, and a decoder is trained to reconstruct the
full-dimensional data [16].The complete autoencoder de-
sign is depicted in Figure 3.More specifically, the complete
LDR to HDR skip connection is defined as:

h̃
D

i = σ
(
W

[
log

(
f−1

(
hE
i

)
+ ϵ

)]
+ b

)
(18)

Adding the skip-connections enables a more optimal use of
existing details.

HDR loss function In this system the HDR decoder is
designed to operate in the log domain. Thus, the loss is
formulated directly on logarithmic HDR values, given the
predicted log HDR image ŷ and the linear ground truth H ,

L(ŷ, H) =
1

3N

∑
i,c

|αi (ŷi,c − log (Hi,c + ϵ))|2 , (19)

where N is the number of pixels.
As the visual system may indirectly perform such sep-

aration when inferring reflectance or discounting illumina-
tion [11].They therefor propose another, more flexible loss
function that treats illuminance and reflectance separately.

log
(
I ŷi

)
=

(
Gσ ∗ Lŷ

)
i

log
(
Rŷ

i,c

)
= ŷi,c − log

(
I ŷi

) (20)



and the parameters are:

Lŷ
i = log (

∑
c wc exp (ŷi,c)) , w = {0.213, 0.715, 0.072}

Gσ = Gaussian low − pass filter , σ = 2
(21)

The illumination component I describes the global varia-
tions, and is responsible for the high dynamic range. The
reflectance R stores information about details and colors.

The resulting loss function using I and R is defined as:

LIR(ŷ, H) = λ
N

∑
i

∣∣∣αi

(
log

(
I ŷi

)
− log (Iyi )

)∣∣∣2
+ 1−λ

3N

∑
i,c

∣∣∣αi

(
log

(
Rŷ

i,c

)
− log

(
Ry

i,c

))∣∣∣2
(22)

6.2. Limitations

There is a content-dependent limit on how much miss-
ing information the network can handle which is generally
hard to quantify.For example,structures and details of im-
ages with a large region with saturation in all color chan-
nels cannot be inferred.Besides,a situation where besides a
similar loss of spatial structures, extreme intensities are un-
derestimated.

There is also a limitation on how much compression ar-
tifacts that can be present in the input image. If there are
blocking artifacts around highlights, these will impair the
reconstruction performance to some extent.

7. Single-Image HDR Reconstruction by
Learning to Reverse the Camera Pipeline

In contrast to existing learning-based methods, the core
idea of this paper [28] is to incorporate the domain knowl-
edge of the LDR image formation pipeline into the model.
They model the HDR-to-LDR image formation pipeline
as the (1) dynamic range clipping, (2) non-linear mapping
from a camera response function,(3) quantization, and then
propose to learn three specialized CNNs to reverse these
steps.By explicitly modeling the inverse functions of the
LDR image formation pipeline, they significantly reduce
the diffi-culty of training one single network for reconstruct-
ing HDR images and get fantastic results.

7.1. Learning to Reverse the Camera Pipeline

As shown in Fig 4,the process of converting one HDR
image to one LDR image can be modeled by the follow-
ing major steps:(1) Dynamic range clipping. (2) Non-linear
mapping.(3) Quantization.

To learn the inverse mapping , they propose to decom-
pose the HDR reconstruction task into three sub-tasks: de-
quantization, linearization, and hallucination, which model
the inverse functions of the quantization, non-linear map-
ping, and dynamic range clipping, respectively.See in Fig
4.

Figure 4. The LDR Image formation pipeline and overview of
single-image HDR reconstruction methods.

Dequantization The Dequantization-Net adopts a 6-
level U-Net architecture. Each level consists of two con-
volutional layers followed by a leaky ReLU (α = 0.1)
layer.And they use the Tanh layer to normalize the output
of the last layer to [-1.0, 1.0].Finally, they add the output of
the Dequantization-Net to the input LDR image to generate
the dequantized LDR image Îdeq.And the loss function is

defined as:Ldeq =
∥∥∥Îdeq − In

∥∥∥2
2

.
Linearization The goal of linearization is to estimate a

CRF and convert a non-linear LDR image to a linear irradi-
ance.To predict the inverse CRF, they train a Linearization-
Net to estimate the weights from the input non-linear LDR
image.They use the ResNet-18 [14] as the backbone of
our Linearization-Net. To extract a global feature, they
add a global average pooling layer after the last convolu-
tional.They then use two fully-connected layers to generate
K PCA weights and reconstruct an inverse CRF.

To satisfy the constraint that a CRF/inverse CRF should
be monotonically increasing, they adjust the estimated in-
verse CRF by enforcing all the first-order derivatives to
be non-negative. Specifi- cally, they calculate the first-
order derivatives by g′1 = 0 and g′d = gd − gd−1 for d ∈
[2, · · · , 1024] and find the smallest negative derivative
g′m = min (mind (g

′
d) , 0).They then shift the derivatives

by g̃′d = g′d − g′m.The inverse CRF g̃ = [g̃1, · · · , g̃1024]is
then reconstructed by integration and normalization:

g̃d =
1∑1024

i=1 g̃′i

d∑
i=1

g̃′i. (23)

The linear LDR image reconstruction loss is defined as

Llin =
∥∥∥Îlin − Ic

∥∥∥2
2
,and the inverse CRF reconstruction

loss is defined as Lcrf = ∥g̃ − g∥22 .And they train the
Linearization-Net by optimizing Llin + λcrfLcrf .

Hallucination They adopt an encoder-decoder architec-
ture with skip connections as our Hallucination-Net. The
reconstructed HDR image is modeled by Ĥ = Îlin + α ·
C−1

(
Îlin

)
, where Îlin is the image generated from the



Figure 5. The original summary table of the five papers.

Linearization-Net and α = max
(
0, Îlin − γ

)
/(1 − γ)

is the over-exposed mask with γ = 0.95.Since the miss-
ing values in the over-exposed regions should always be
greater than the existing pixel values, they constrain the
Hallucination-Net to predict positive residuals by adding a
ReLU layer at the end of the network.And the loss func-
tion is Lhal + λpLp + λtvLtv,where Lhal = ∥ log(Ĥ) −
log(H)∥22,Lp is the perceptual loss [19] and Ltv is the total
variation(TV) loss.

Joint training First,they train the three models respec-
tively.After they converge,they jointly fine-tune the entire
pipeline to reduce error accumulation by minimizing the
combination of loss functions Ltotal :

λdeq Ldeq +λlin Llin +λcrf Lcrf +λhal Lhal +λpLp+λtv Ltv
(24)

w={1, 10, 1, 1, 0.001, 0.1}
Refinement Refinement-Net adopts the same U-Net ar-

chitecture as the Dequantization-Net, which learns to re-
fine the output of the Hallucination-Net by a residual learn-
ing and is proved effective.

7.2. Ablation studies

To demonstrate the effectiveness of explicitly reversing
the camera pipeline, they train our entire model (including
all sub-networks) from scratch without any intermediate su-
pervisions and find the performance of such a model drops
significantly.which shows that the stage-wise training is ef-
fective, and the performance improvement does not come
from the increase of network capacity.

8. Future work

Existing methods have solve many problems and makes
the results better and better. While the advantages of these
methods are clear,they are yet to be perfect solution.I also
observe some challenges in the HDR images construction.

8.1. Dataset

Both training and evaluation of HDR imaging algorithms
require high quality annotated datasets. But creating a high
quality HDR dataset with such features still poses several
challenges.So I hold the view that introduce a robust and
proper dataset for training deep network for HDR images
reconstruction is significant.

8.2. Large motions recovered by single image

Notice that,Wu [39] reconstruct HDR images with large
foreground motions brilliantly.However,the single-image
reconstruction methods aren’t able to make it well.So I con-
sider this will be a interesting work for us to do.

9. Conclusion

In this paper,I present five methods to reconstruct HDR
images by deep learning.They solve many problems such
as large motions recovery,hallucinate well in the over-
exposure region and introduce dataset that is proper for deep
learning.Also,there are still many problems waiting for us to
resolve.I am looking forward to more robust methods and
prospect of more extensive applications of HDR imaging.
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